Ch. 9:Muscles & Muscular Tissue Ch. 10: Muscular System

TEST: Nov 18&19

Muscular System TEST Topics:

- Bio Concepts
- 3 types of muscle tissue
- 4 Muscular Performance Tasks
- Muscle vs Osseous Tissue comparison
- Direct vs Indirect Attachment

- Muscle Metabolism
- Glucose vs Glycogen
- Aerobic Endurance
- Anaerobic Threshold
- Muscle Arrangement
- Smooth Muscle
- Peristalsis
- Muscular Dystrophy
- Muscle Classification

Review Key Concepts in Bio material will be on test!

- ★ Cellular Respiration
- ★ Anaerobic Respiration
 - Lactic acid fermentation
 - Glycolysis
- ★ The role of Mitochondria
- ★ Active Transport
- ★ Facilitated Diffusion

3 Types of Muscle Tissue, p. 276

Skeletal attach to & cover the bony skeleton Skeletal, striated, voluntary Cardiac only in the heart

- Cardiac, striated, involuntary
- Smooth walls of visceral organs moving fluids/substances
 - Visceral, nonstriated, involuntary

Project TIME!

Muscles perform these 4 tasks:

- 1. Responsiveness- excitability, irritability
- 2. Contractility
- 3. Extensibility
- 4. Elasticity

Skeletal Muscle

Myofibril Muscle fiber

Endomysium

Fascicle

Perimysium

Epimysium

VS.

Compact Bone

Vessels/Nerves

Lamella

Lacunae

Osteon

Circumferential Lamallae

Periosteum

Skeletal Muscle- Gross Anatomy

- ★ Muscle fibers
- ★ Voluntary control
 - 1 nerve
- ★ Rich blood supply
 - One artery
 - >1 veins
- ★ Connective tissue
 - Epimysium, perimysium, endomysium

Connective tissue of the skeletal muscle, pg. 278, fig. 9.1

 $Deep \rightarrow Superficial$

а.

b.

C.

d. e.

f.

Skeletal Muscle Connective Tissue SHEATHS, pg 279

- Epimysium: outermost covering of dense irregular surrounds the <u>1</u> muscle
- **Perimysium: outlines** each of the MANY fascicles
- Endomysium: outlines ea. Of the MANY myofibrils

Direct & Indirect Muscle Attachments

DIRECT: epimysium is fused to cartilage attached to bone

INDIRECT: most common attachment; tendons extend from muscle to attach to bone

Muscle Metabolism- glucose & glycogen

3 ways in how to replenish phosphate (ADP \rightarrow ATP)

- 1. Creatine phosphate
- 2. Anaerobic respiration- glycolysis & lactic acid formation
- 3. Aerobic respiration

- **1. Creatine Phosphate**
 - Found in muscles- 2x more CP than ATP
 - During intense exercise
 - Creatine kinase (enzyme) allows for efficient work
 - CP + ADP = ATP
 - Maximum muscle power of 14-16 sec, enough energy for a 100-meter dash
 - Rest &/or inactivity >CP

2. a. Lactic Acid Formation- 5% ATP production

- ATP & CP are exhausted
- ATP generated by breakdown of glucose from blood or glycogen stored in muscle
- When muscle contraction > ATP supply, lactic acid is made
- Helps during spurts of vigorous activity
- >lactic acid = sore muscles during intense exercise
- Fastest method of ATP production

2. b.Glycolysis

- Occurs after digesting glucose
- Glucose 'prepares' to be converted into pyruvic acid
- Anaerobic process
- Mitochondrion
- It can proceed in 2 directions
 - Fermentation
 - Cellular respiration

3. Aerobic Respiration-95% of ATP

- Light-moderate exercise
- ATP = glucose + O2
- CO2 removed from muscle tissue \rightarrow blood \rightarrow lungs
- FUEL comes from:
 - Muscle glycogen
 - Bloodborne glucose, pyruvic acid & free F.A.T
- Highest amt of ATP, but slow process

AEROBIC ENDURANCE, pg 299

- *ATP supply = ATP demand
 - Must have oxygen for Aerobic respiration
 - Light exercise: up to 2 hours
 - Short & Powerful activities
 - Lifting weights
 - Diving
 - Sprinting

anAEROBIC THRESHOLD, pg 299

- *ATP Demand > ATP Supply
 - Exercise exceeds ATP for Glycolysis
 - Intermediate activities
 - Tennis
 - Soccer
 - **100 m swim**

Muscle Fatigue, pg 300

- Inability to contract
- ATP declines during contraction

- Imbalance of Na+ and K+ in membrane potential
- Aerobic Endurance recovers faster than anaerobic
 threshold

threshold

Fasicle arrangements in muscles, fig.10.1,pg322

- 1 Fascicle = many MYOFIBRILS
- 7 patterns
 - 1. Circular
 - 2. Convergent
 - 3. Parallel
 - 4. Unipennate

5. Bipennate
 6. Fusiform
 7. Multipennate

Circular Fascicles

- Forms a concentric ring
- Found in external body openings
- SPHINCTERS

Convergent

- Fan or triangular shape
- Converges towards a single tendon

Pectoralis major muscle

Parallel

- Strap-like muscles
 - Sartorius (thigh) muscle
- Spindle shaped w/ expanded belly

 Also considered a fusiform /fuze-form/ muscle category

Biceps brachii

- Pennate: attaches to the side of the central tendon
- Unipennate: half- feather
 - Extensor digitorum longus (shin)
- Bipennate: 'feather' structure
 - Rectus femoris /fem-err-iss/ (quads)
- Multipennate: many feathers
 - Deltoid (shoulders)

2 of 3 Muscular Tissue: SMOOTH,pp 305-311

- Muscle in the walls of all the body's hollow organs
- Microscopic Structure
 - Spindle shaped
 - Nucleated
 - Blended with Endomysium
 - Organized in sheets

Peristalsis, p. 306

- Wave-like contractions of internal organ's pathway
 - 2 Types
 - Expulsion
 - Constriction

CONSTRICTION

Asthma Stomach cramps

EXPULSION

- Digestive tract
- Rectum
- Urinary bladder
- Uterus

2 Types of Smooth Muscle, pg. 311

<u>Single-Unit</u>

- Fibers composed of sheets
- Responds to chemical stimuli
- Organs & pathways

<u>Multiunit</u>

- Customized fibers
 Responds to neural stimuli
 Arrector pili
- Pupil- contraction/dilation

H.I.- Muscular Dystrophy

- Muscle-destroying disease
- 9 types

*Myotonic

*Duchenne

*Becker

*Limb-girdle

*Facioscapulohumeral

*Emery-Dreifuss

*Distal

*Oculophyngeal

*Congenital

Diagnosing Muscular Dystrophy

- Family history
- Physical Exam
- Blood- Serum creatine kinase or Serum aldolase
- Biopsy
- Neurological Test

Factors UNRELATED TO M.D.

- Surgery cause muscle weakness
- Toxic Exposure
- Medication-side effects
- Neuro-muscular?

4 Functional Groups, p. 321 groups of muscles achieve movement

- 1. Agonist
- 2. Antagonists
- 3. Synergists
- 4. Fixators

AGONIST

- Targeted muscle
- Aka Prime Mover

ANTAGONIST

- Muscles that oppose or reverse the agonist
- Stretched or Relaxed when agonist is contracted
- HELPS REGULATE PRIME MOVER
- **OPPOSITE SIDE OF AGONIST**

SYNERGIST

- Group of muscles and joints work towards the objective of the movement
 - Adds extra force
 - Reduces unnecessary movements

Synergist

- Synergist are other muscles that work together with the prime mover to produce a common action.
- When the prime mover crosses 2 or more joints, synergists prevent undesired action at the intermediate joints.

FIXATOR

a stabilizer that acts to eliminate the unwanted movement of an agonist's, or prime mover's, origin.

Muscle Actions during Elbow Flexion

- Prime mover = brachialis
- Synergist = biceps brachii
- Antagonist = triceps brachii
- Fixator = muscle that holds scapula firmly in place such as rhomboids